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Axisymmetric two-stream instabilities in high-intensity particle beams are investigated analytically
by making use of the Vlasov—Maxwell equations in the smooth-focusing approximation. The
eigenfunctions for the axisymmetric radial modes are calculated self-consistently in order to
determine the dispersion relation describing collective stability properties. Stability properties for
the sausage and hollowing modes, characterized by radial mode numbetsand n=2,
respectively, are investigated, and the dispersion relations are obtained for the complex
eigenfrequencyw in terms of the axial wavenumbek and other system parameters. The
eigenfunctions obtained self-consistently for the sausage and hollowing modes indicate that the
perturbations exist only inside the beam. Therefore, the location of the conducting wall does not
have an effect on stability behavior. The growth rates of the sausage and hollowing modes are of the
same order of magnitude as that of the h@ipole-modé instability. Therefore, it is concluded that

the axisymmetric sausage and hollowing instabilities may also be deleterious to intense ion beam
propagation when a background component of electrons is presenteB00®American Institute

of Physics. [DOI: 10.1063/1.1403375

I. INTRODUCTION the Vlasov—Maxwell equations. Therefore, the present work

Charged particle beams are subject to various collectivé® comphmentgry to a previous §td&§’yof the two—stream
instabilities that can deteriorate the beam quality. For exinstability carried out for nonaxisymmetric perturbations

ample, intense charged particle beams can develop a ha(gl‘w#o)' . . .

structure during propagation. This halo structure may be 1€ basic assumptions and theoretical model are sum-
caused by collective excitations, such as axisymmetric holMarized in Sec. Il. The theoretical analysis is based on the
lowing instabilities. High energy ion accelerators and trans/inearized Vlasov-Maxwell  equations assuming long-
port system™ have a wide range of applications, including wavelength, Iow—frequgncy, aX|sy.m_metr|c.perturbatlons with
basic scientific research, spallation neutron sources, nucledfd?= 0. The perturbation analysis is carried out for the spe-
waste transmutation, and heavy ion fusioh.However, cific choice of equilibrium distribution function in which all
background electrons are often present at the high beam cuf the beam ions have the same value of transverse energy.
rents and charge densities of practical interest in many iod Ne electrons are also assumed to have the same value of
beam applications. It has been recognfzétifor many years ~transverse energy. The eigenfunctions for axisymmetric ra-
that the relative Streaming motion of the high-intensity bearﬁjia| modes are calculated Self-ConSistentIy in order to obtain
particles through a background charge species can providge dispersion relation for the complex eigenfrequency

the free energy to drive the classical two-stream instability.The orbit integral for the perturbed distribution function is
For example, for electrons interacting with an intense protorgvaluated self-consistently by integrating over the unper-
beam, as in the Proton Storage Ri(RSR experiment, or turbed particle orbits, and the dispersion relation is obtained
the Spallation Neutron SourcéSNS, this instability is in matrix form[Eq. (26)] for radial mode numbens=1 and
referred to as electron—proton e£p) two-stream N=2.

instability*1? Theoretical treatments of the two-stream in-  Stability properties of thesausage modecharacterized
stability can be based on either a kinetic mo€igtat makes by the radial mode number= 1, are investigated in Sec. Il
use of the Vlasov—Maxwell equations to describe the selfAt moderate beam intensity, the dispersion relation for the
consistent interaction of the ion and electron distributionsausage mode is approximated by a quadratic equation for
functions with the applied field and the self-generated electhe eigenfrequency, which has a qualitatively similar form
tric and magnetic fields, or on rigid-beam modéfsthat to the dispersion relation for the dipole-mode instability
analyze the transverse motion of the center-of-mass of théhose modg!® The eigenfunction obtained self-consistently
ion and electron charge distributions. In the present analysigpr the sausage mode indicates that the perturbations exist
we investigate two-stream instability properties for axisym-only inside the beam. Therefore, the location of the grounded
metric perturbationsd/d6=0) about an intense ion beam conducting wall does not affect the stability behavior. Stabil-
propagating through background electrons by making use dfy properties of thehollowing instability characterized by
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radial mode numben=2, are investigated in Sec. IV. The tivistic, and that the transverse momentum components of a
eigenfunction obtained self-consistently for the hollowing in-beam ion,p, andp,, and the characteristic spread in axial
stability also indicates that the perturbations exist only insidenomentum, §p,= p,— ypmpB,C, are small in comparison
the beam. The radial component of the perturbed electromagvith the directed axial momentum,myB;,C.

netic force is proportional to the derivative of the effective Under the equilibrium assumption that the distribution
perturbed potential with respect to the radial coordimate function for the beam ions and background electrons are axi-
and displaces the beam particles towards the vicinity of theymmetric and spatially uniform in the axial direction, we
beam edge, therebyonlinearly depleting the particle den- recognize that the total transverse energies and axial momen-
sity on-axis € =0). The full dispersion relation for the hol- tum of the beam ions and background electrons are approxi-
lowing mode is obtained, and is approximated by a quadraticate constants of the motion in the equilibrium fielfi§or
form at moderate beam intensity, which predicts instabilitypresent purposes, the equilibrium distribution functions for
for several ranges of axial wavenumberThe growth rates the beam ions and the background electrons are takertto be
of the sausage and hollowing modes are the same order-of-

. ” . . n
magnitude as those of the dipole-mode instabifityn this FOH,p.P)= ﬁ‘s(Hib_TLb)Gb(pz)v

regard, we emphasize that the axisymmetric sausage and hol- YoMy

lowing instabilities may also be deleterious to intense ion 2

beam propagation when a background component of elec- FO(H,.,p,)= %ﬁ%rﬂe)Ge(Pz)-
trons is present. Variations of the hose, sausage and hollow- €
ing instabilitie3®-*'are also known to affect the propagation Here, n, and n, are the on-axis ion and electron number
of intense electron beams through background plasma.  densities, respectivelyf,, and T, are positive constants,
andH,, andH . are the single-particle Hamiltonians de-
Il. BASIC ASSUMPTIONS AND THEORETICAL MODEL  '"ed bY
_ , : : . ) 1 1

The equilibrium configuration consists of an intense ion HLb=—pi+ —mebwf;bf2+zbe[‘1’o(r)—‘I’Om],
beam with radiug, that propagates in the direction with 277pMy 2
directed kinetic energy ,— 1)m,c? through a perfectly 1 1 ©)
conducting cylinder with wall radius,,. The ion beam H e pf+zmewéerz—e[%(r)—%m],
propagates through backgrouristationary electrons with
characteristic directed axial momentuggm,3,c in the z  where Z,e is the ion charge,—e is the electron charge,
direction, whereV,= B,c=const is the average axial veloc- W(r) is defined byWq(r)= ¢o(r) — BpA,(r),do(r) is the
ity, and y,=(1—B2) Y2 is the relativistic mass factor. In equilibrium electrostatic potential, and,(r) is the axial
order to simplify the analysis, it is assumed that the backcomponent of the equilibrium vector potential. In Eg), r
ground column of electrons also has the radiys In the =(x?+y?)? s the radial distance from the beam axis, and
context of the smooth-focusing approximation, the beanthe axial momentum distributions are normalized according
ions are radially confined by the applied transverse focusingo
force modeled by

:Zme

o | eupadn-1- [ cupodp, @

b _ 2
Fioc= — YoMpwigpX, ,

wherex, =xe,+yey is the transverse displacement fromthe  The equilibrium self-field potential®(r) and ¢q(r)

beam axism, is the ion rest mass; is the speed of lightn  occurring in Eq.(3) are calculated self-consistently frétn
vacuqg andw g, = const is the effective betatron frequency for 14

transverse ion motion in the applied focusing field. The equi- = 7 . ﬂ\p (r)=—4me
librium and stability analyses are carried out by using cylin- rar ar°

Zp 0/py_ 0 }
;gnb(r) ne(r)|,

drical polar coordinates (#,z), where thez axis is along the 19 9 (5)
beam propagation direction, ands the radial distance from 1 — po(r)=—4me[Zynd(r) —nd(r)],
the z axis. Both the ion beam and background electréns ror or

equilibrium), are assumed to be azimuthally symmetricang the equilibrium ion and electron density profila§(r)
(9/196=0) and axially uniform ¢/9z=0). As for the back-  andnd(r), are defined by

ground electrons, to the extent that the beam ion density

exceeds the background electron density, the space-charge no(r)=f d3p FO(H, p.p,)

force on an electrorF$=eV ¢, provides transverse confine- b bl Lb 2

ment of the background electrons by the electrostatic space- (6)
charge potentialg(x,t). However, for completeness, the ng(r)=f dp Fg(HLe,pZ),

present analysis also incorporates the effects o&plied

transverse focusing force on the electrons modeledy  The constantslg,, and ¢q, in Eqg. (3) are the on-axis r(

= —mewzexl, wherem, is the electron rest mass, ang, =0) values of the self-field potentiald/o(r) and ¢q(r),
=const is the effective betatron frequency for transversendZ, is the ionization state of the ions, which is included
electron motion in the applied focusing field. It is further here to extend the analysis to beam ions with a higher charge
assumed that the ion motion in the beam frame is nonrelastate thanZ,=1. Finally, in Egs.(3) and (5), it has been
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assumed that the equilibrium axial currentJS(r) that are cold in the axial direction. The perturbed potential

=Zbengvgb, is carried by the beam ions, Witbrgezﬁec amplitudes,¥,(r) and ¢4(r), for the beam ions and back-

=0. ground electrons occurring in the linearized Vlasov equa-
In order to simplify subsequent analysis, we assume thaions are determined self-consistently in terms of the per-

the ion beam and background electrons have overlappinturbed particle number densities. We obtain

density profiles. Substituting ER) into Eq.(6), and making 919

use of Egs.(3), (4), and (5), we obtain the step-function — = —ryy(r)=—4me

density profiles arr or

Zy
_anl(r)_nel(r):|1
Yb

(12
0 —

ne(r np=const, Osr<r 194

elf) _| M b @) S r (1) = — A ZyNp (1) — Nea(1)],
Z,f |0, rp<r=r, orror

np(r)=

wheref =n./Z,n,=const is the fractional charge neutraliza- Where¥1(r) = ¢1(r) = BuAx(r), andnyy(r) andne(r) are

tion by the background electrons. In Eg), the equilibrium the perturbed number densities of the beam ions and back-
beam radius , is defined by ground electrons, respectively. The perturbed densities can

be obtained from the linearized Vlasov equations &bt}
2_> Tip _s Tie ® and 6F,. For example, the perturbed ion beam density
b ymere T merd’ Npa(r) is calculated from

where the(depressedbetatron frequenciesy, and v, in Eq.
(8) for the beam ions and background electrons are defined
by16

nbl(r)=f d3p 6Fy,. (13

In Eq. (13), 6Fy, is the perturbed ion beam distribution func-
1 ) tion calculated by the method of the characteristizhich

2
2_ 2 _ “pb
V=g y_ﬁ_f can be expressed'4s

2 (9) J t Pl
> o, @pb YoMy OFp(X,P,1) =Zp€Gy(P2) Z—Fpo(Hyp) | dU'—— -
Ve=Wpge > mee(l—f ). dH - YoMy
The constanf=n./Zyny, in Egs.(7) and(9) represents the VLX), (14

fractional charge neutralization provided by the backgroundvhere use has been made of H@l). Here, x'(t') and
electrons. The quantity?,, occurring in Eq.(9) is the on-  p/(t’) are the particle trajectories in the equilibrium field
axis relativistic beam plasma frequency-squared defined byonfiguration that pass through the phase space pajntat
wip=4mn,Zoe? ypmy, . As expected, thédepressedbeta-  timet’ =t.

tron frequencies in Eq.9) for the ions and electrons inside We note from Eq.(14) that the time integral requires
the beam are constantimdependent of radial coordinat¢  information on the particle orbits in the equilibrium fields. A
for the step-function density profiles in E(). determination of the particle orbit in the equilibrium fields,

We now make use of linearized Vlasov—Maxwell generated by the self-field potential(x) and¢q(x) in Eq.
equationd® to develop a theoretical model of the two-stream(5), is difficult for general equilibrium profiles. Moreover,
instability for perturbations about the equilibrium describedEq. (14) contains an integral over the unperturbed orbits of
by Eg. (2). In the subsequent analysis, we adopt a normathe (yet unknown eigenfunctionsdy, which makes Eq(12)
mode approach in which all perturbed quantities are assumegknerally intractable analytically. This difficulty is funda-
to vary with 6, z, andt according to mental, reflecting the fact that individual particle orbits span

. the beam cross section, communicating information about
or(r.6.z0)=Ta(rexdi(kz=wb)], (10 the perturbation from one value oto anotger. However, the
for axisymmetric perturbations witt/ 96=0. Here,w andk  particle motion in the equilibrium field configuration gener-
are the complex eigenfrequency and axial wavenumber ddted by the step-function density profile in Ed) can be
the perturbation, with Ine>0 corresponding to temporal determined exactl}f
growth. We also consider axial wavelengths that are long and It is convenient to introduce the effective perturbed po-
frequencies that are low compared with quantities that charential amplitudey;(r) defined by

acterize the beam radius, i.e., Ui(1)= a1 — BA(r) (15)

for charge specie$ in a frame of reference moving with
Furthermore, the present stability analysis assumes electraxial velocity 8;c. Here,A,,(r) is the axial component of
static perturbations with sufficiently high frequency thatthe perturbed vector potential. Note that the axial velocity
|o/k—Buc|>vr,, and |w/k|>vr,, where wvr,, Bjc ofthe beam ions and the background electrons are given
= (2Tp,/ yamp) Y2 and vre,= (2Te,/me) 2 are the character- by ;= By, for the beam ionsj(=b) and ;=0 for the back-
istic axial thermal speeds of the beam ions and the background electronsj=e). After carrying out some tedious but
ground electrons, respectively. Indeed, for present purposestraightforward algebraic manipulation of E@g), (3), (13),

we assumes,(p,) = (P2~ YoMpBrC) and Gu(p,) = 8(p,), (14), and (15), we obtain the coupled integro-differential
which correspond to beam ions and background electronsquation$’ for the eigenfunctiong(r)

|krp|<1, |orp|<c. (11
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1d d n r2e

Fara(//s(r) azo aja(m) , 0<r<ry,
%i(r)= In(r/ry,) 22

_5(r_rb)2 W( —BsB)) In(rbTW)E 8y, Tb<I<ru,

w

X[j(Rp) + Qjl(R) ]+ O (rp,—r) wherer,, is the radius of the conducting cylinder, aag are
ol expansion coefficients. The orbit integialin Eq. (17) can
X E 87y; mjejzanj(l—,Bsﬁj)<&—'2> . (16 be calculated by substituting E@2) into Eq.(17) and mak-
! Py p2 =p2, ing use of the unperturbed orbit in E¢R1). In order to

o ,J evaluate the orbit integrd} in Eq. (17), we use the relation
In Eq. (16), note that the contribution proportional @&(r

—rp) corresponds to a surface perturbation localized at p2

=r,, whereas the term proportional &(r,—r) corresponds (r')zz(x')zﬂ)")z:WS'r\z viT+r?cos vjr
to a body wave perturbation extending throughout the beam. BN

The orbit integrall; in Eq. (16) is defined by

m v Jcosqo 0)sin(2v;7). (23

27 d 0
|j(r,pi)=if0 %ﬁwdwj(r')exmnjr). 17)

We also introduce the time integrals,,, andhl,,, defined
Here, 7=t'—t is the displaced time variable, the transverse by

Kineti f th ticl ing in EA.6) is de- i
fi:?:dltEJ;nergy of the particles occurring in E@.6) is de hiyn=h[cos(ny, 7)]
0
2 . .
o1 =|Q-f drexp(—iQ;r)cod(nv;7),
SOy, (19 1 Areditmeosny )
i (24)
and the Doppler-shifted eigenfrequen@y is defined by hij,=h[sin(nv;7)]
Qj:[‘”_"_ﬁbc' J=b, 19 :injf drexp—iQ;n)sid(ny7).
w, |=e. -

The function®(x) on the right-hand side of Eq16) is the A few examples of the time integrals defined in Eg4)
Heaviside function defined b§ (x)=1 for x>0 and® (x) have been calculated. They are
=0 for x<0. The subscrips in Eq. (16) represents the beam

ions for s=b and the background electrons fere, and hio—_ QjZ—ZVjZ i — 2Vj2
therefore the chargej occurring in Eq.(16) is given by c21 Qj2_4,,j2' s21™ QJ.2_4,,J.2’
Zpye, j=Db,
e,-=[_be J.:e (20 o8
v . s22 912_161)1_21
The anglep occurring in the orbit integral in Eq16) is (25
the perpendicular momentum phase angle definedppy P Qf— 16V,-29j2+ 24V12
=p, cose andp,=p, sing. Note that the orbit integral in Noar=~ (QF - 16v))(QF —4v7)’
Eqg. (17) must be carried out in order to solve the coupled
eigenvalue equationd6). For the step-function gensity pro- j ,,Jf‘
files in Eq.(7), the particle orbits are given B/ his= 24(912—16Vj2)(9j2—4vj2)'
xX'(7)= P COSe sinv;7+r COSH COSY; T, which will be used to evaluate the orbit integral in Eg6).
g We outline the solution to the coupled eigenvalue equa-
(21) tions in Eq.(16) for the case of axisymmetric modes with
y'(7)= o sing sinv;7+r sing cosv;, radial mode numbers=1 andn=2, which have the func-
Yitivi tional form in Eq.(22). We first substitute Eq$22) and(23)

wherev; is the (depressexbetatron frequency defined in Eq. into Eq.(17), and evaluate the orbit integriglin terms of()

(9), and7=t'—t is the displaced time variable. The bound- and the coefficienta;, by making use of Eqg24) and(25),

ary condition of the particle orbit are(7=0)=x=r cosf thereby obtaining a closed form of the orbit integral. Next we
andy(7=0)=y=r sin6. The beam ions and the background substitute Eq(21) into Eq.(15) and solve Eq(15) inside the
electrons execute the simple harmonic orbits described bgeam. Finally, we apply the appropriate boundary conditions

Eq. (21) over the beam cross section. atr=ry, determined by multiplying Eq15) by r and inte-
The self-consistent eigenfunctionlg,(r) and ¢(r) for grating over the interval,—e<r<rp+e, with e—0, .
radial mode numben are given b§? The result is a matrix dispersion equation of the form
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X121 0 X113 X4 X15 X6 a
)
O X22 X23 X2a X25 Xo26 a
e0
0 O X33 X3a X35 X36 ap,
=0. (26)
0 0  Xa3 Xaa Xas Xae de1
0 0 0 0 Xxs5 Xs6 p2
Ae2
0 0 0 0 Xes Xes
Here, the matrix elements in E(R6) are defined by
xu=[IN(ry /)17 X13= X110~ X33, X14= — X34
X15= X11— (1/2) x55— X35, X16= — (1/2) X56— X 36>
X22= X1 X23= 7 X43,  X24= X11~ X44»
X25= — (U2 xe5— Xa5:  X26= X11— (1/2) X66— X 46>
X33:(wpb2/7§7/§)hks)21_ 2, xas=(nf walyg)hgﬂ’
27

X35~ 2(w§b/7§'/§)h§41, X36= 2( ﬂfw,zab/”g)h;lv
X43= (w;zjb/ Vg)hgﬂ, Xa4= (nf wﬁb/ Vg)hgm_ 2,
X45= —2(w§b/V§)h§’41-

X55= (w;z)b/ YgVﬁ)(hgzz_ 2h241) -8,

Xa6= 2(nf wf,blvg)h;l,

Xeos= (7f i/ vE) (W~ 2h5s) —8,

Xs6= = (7f i/ v7) (o~ 2h5),

Xes— — (wﬁb/ Vtz))(hgzz_ 2h241),

where » is defined byn=y,m,/Z,m., andf=n./Zyn, is
the fractional charge neutralization.

Setting the determinant of the matnpin Eq. (26) equal
to zero gives the dispersion relation

X11X22 X 33X 44— X34X43) ( X55X 66— X56X65) = O- (28

Therefore, the dispersion relation for the- 1 radial mode is
obtained from

X33Xaa— X3aX43= 0, (29

and the expansion coefficients in Eg6) for then=1 mode
satisfya;(#0, a;; # 0, anda;, =0, where the subscriptrep-

resentg =b for the beam ions ang=e for the background
electrons. The dispersion relation far=2 radial mode is
obtained from

X55X66~ X56X65= 0, (30

and the expansion coefficierds, in Eq. (26) for n.=2 mode

Two-stream sausage and hollowing instabilities . . . 4641

Ill. SAUSAGE-MODE STABILITY PROPERTIES FOR
RADIAL MODE NUMBER n=1

Axisymmetric perturbations with radial mode number
n=1 are characterized by the so-called sausage instaf3ility.
The dispersion relation for the=1 mode is obtained from
Eqg. (29 by substituting Eqs(25) and (27) into Eq. (29).
Carrying out some straightforward algebraic manipulation,
the dispersion relation for the=1 mode can be expressed
as

[(0—kBye)*— wp](0?~ wg) = wf, (3D
wherewy, and w, are defined by
2 2 2 1
wb:4wﬂb_wpb _2_2f y (32)
Yb
wi=(2-f)nwj, (33
and the coupling terr’rm?1 is defined by
wi= nfwgb. (39

In obtaining Eqs(32) and (33), we have also made use of
Eq. (9), assuming that there is no externally applied focusing
force on the electronSa(f;ez 0).

The dispersion relation in Eq31) is similar in general
form to previous results''® obtained for the dipole-mode
instability. In the absence of background electrofys Q), it
follows from Eq.(34) thatw;=0, and the dispersion relation
in Eq. (31) gives purely oscillatory beam-mode sideband os-
cillations with frequencyw—kB,c=* wy,. For f#0, how-
ever, it follows thatw;# 0, and the right-hand side of Eq.
(31) causes an unstable coupling of the electron oscillations,
w=* w,, and the ion oscillationsy —kB,c= * w}, at least
for a certain range of the axial wavenumberSpecifically,
for the positive-frequency electron branch in E§1) with
w=~+ wg, it can be shown that the dispersion relation in Eq.
(31) supports one unstable solution with &0 for oscilla-
tion frequency and wavenumbem (k) in the vicinity of
(wg,kp) defined bywy=w, and kgB,c=w+ wy,. Indeed,
the positive-frequency electron branch+ + w.) couples
unstably with the downshifted ion branchw kB¢
~— wp). Substitutingw = wy+ dw, andk=Kky+ 5k into Eq.
(31) gives

(2wp— w+ B oK) (Sw— BpCdK) (2wp+ dw) dw= — wf,

(35
which is fully equivalent to Eq(31).

Note that the parameten= y,my/Z,m, occurring in
Egs. (33)—(35) is much larger than unity for protons and
more massive ions. In parameter regimes of practical inter-
est,w, in EQ.(33) is much larger thamw,, andws in Egs.(32)
and (34), and therefore |dw|<2w.. If further,
|dw|,| Bpc K| <2wy,, then Eq.(35) can be approximated by

are all nonzero. Stability properties for axisymmetric pertur-{N€ Simple quadratic form

bations with radial mode numbers=1 and 2 are investi-

gated in subsequent sections. It is also shown in subsequent dw(dw— BLcdk)= —TI3=-

sections that,_(a;,=0, which corresponds t@;(r =ry)
=0 at the beam surface ang(r)=0 in vacuum region
(rp<r=r,).

4
ws

dwwy’

(36)

which has a maximum growth rate (l@),,.,=1¢ when sk
=0. It is obvious from Eqgs(34) and(36) that the maximum
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FIG. 1. Plots of the normalized growth ratg=(Im w)/wg, versus the  FIG. 2. Plots of the normalized growth rate=(Im w)/wg, versus normal-

shifted axial wavenumbel=(k—ko) ByC/ @y, obtained numerically from  ized beam intensitg,= w},,/2y; w5, obtained from Eqs(31) and (36) for

Eq. (31) for several values of normalized beam intensigy= w3,/2vw 3%, k=k, and parameters otherwise identical to Fig. 1.

ranging from 0.1 to 1.0. HeréB,c= we+ wy, . Other system parameters

correspond toZ,=1, mass numberA=m,/m,=137, (y,— 1)m,c?

=2.5GeV,f=0.1, andwg=0. . . . .
maximum growth rate obtained from the approximate disper-

sion relation in Eq.(36) is an overestimate by about 35%

growth ratel’, in Eq. (36) increases as the fractional charge relative to the maximum growth rate obtained from the full

neutralization increases. We also note from () that the  dispersion relation in E¢31). In summary, the growth-rate
unstable range of the axial wavenumbkris given by properties of the sausage instability characterized by axisym-
— 2T y< Bycok<2T,. metric perturbations with radial mode=1 are qualitatively

The quadratic approximation to the dispersion relationSimilar to éhose of the dipole-mode instability described
given in Eq.(36) is valid for moderate beam intensities sat- previously:® The real oscillation frequency for the sausage
isfying Sb:wzblz')’ﬁwéb<0 2 This is the case of interest for Mode, however, is found to be larger than that of the dipole-

: <0.2.

proton linacs and storage rings. For heavy ion fusionM0de instability. . _ o
application$~” however, the beam emittance is very low and I'F is important to note that .the dlspersmn relation in Eq.
the normalized beam intensity is such tisgtcan approach (31) is independent o_f the rad_lal location of the_conductlng
unity in the absence of background electrohs 0). At such wall. Moreover, the eigenfunctions for time=1 radial mode
high beam intensities, it follows that it is necessary to solve?™® given by
tr_le f_uII quartic dispersio_n relatio(81) for_the complex os- (1) =apo+ap(r/ry)?,
C|Ilat_|on frequencyw_. Typical results obtame(_j from EQ31) 3 Iry2 (37)
are illustrated in Fig. 1, where the normalized growth rate  %e(r) =aco+ae1(r/rp)*,
u;=(Im w)/wpg, is plotted versus the shifted axial wavenum- jnside the beam (&r<r,). From Eq.(26), we obtain
ber {=(k—Kkp)BpC/wg, for several values of, ranging B B
from 0.1 to 1.0. HerekoB,C=we+ wy,. Other system pa- X113p0+ X138p1F X148e1 =0, X338p1+ X348e1=0, a8
rameters in Fig. 1 correspond @,=1, mass numbeA Y20+ X261+ X2i@e1 =0,  Xaso1+ XasBer=0, (39
=my/m,=137 (cesium iony (y,—1)myc =2.5GeV, _ _ _
f=0.1, andwg,=0. At very high beam intensity witls, Where the matrix elemeng,, is equal t(_)Xn- The coeffi-
—1, say, it is evident from Fig. 1 that the normalized growth Ci€NtSano, @eo, &1, andae, are determined from Eq38),
rate u; has a large bandwidth and becomes significantlyPy Making use of the dispersion relation in ER9). Making
skewed abouk=k,. It is also striking from Fig. 1 that the US€ Of Eqs(27) and(38), it is straightforward to shovay,
instability growth rate can be large for the very high beam= ~ @1 @ndag=—a., . Therefore, from Eqe22) and(37),
intensities §,— 1) of interest for heavy ion fusion. The nor- It follows ¢;(r)=0 for (r,<r<r,). This means that the
malized real frequency Re can also be obtained numeri- perturbed electromagnetic fields of the axisymmetric sausage
cally from Eq.(31). Profiles of the normalized real frequency MOde are zero in vacuum region outside the beam. Sausage-
of the sausage instability are qualitatively similar to those ofode perturbations do not sense the presence of the conduct-
the dipole modé® ing wall. Thus, the dispersion relation in E®1) does not

The maximum growth rate (1m),,s obtained from the depend on the location of the conducting wall.
quadratic approximation in Eq.36) occurs at{=0. The
maximum growth rate for high beam intensity obtained fromy,, ;| GwING-MODE STABILITY PROPERTIES FOR
full dispersion relat!o_n in Eq(31) still occurs in the \(|C|n!ty RADIAL MODE NUMBER n=2
of k=Kkg, although it is skewed abolt=k,. Shown in Fig.
2 are plots of the normalized growth ratg=(Im w)/wg, It is instructive to determine the eigenfunctions in Eg.
versus the intensity paramesgrobtained from Eqg31) and  (28) for the n=2 radial mode. The first pair of equations
(36) for k=k, and parameters otherwise identical to Fig. 1.relating the coefficients of the=2 eigenfunctions are given
For sufficiently small values of,, the numerical results by
obtained from Eq(31) are in excellent agreement with the
approximate quadratic dispersion relation in E26). On the
other hand, at very high beam intensity witg—1, the X118e0™T X238p1 T X248e1 T X258p2 T X268e2= 0,

X1180 1 X138b1 T X 14861+ X 1582+ X168e2=0,
(39
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which follow from the matrix equatiori26). Equation(39)
can be simplified to give

Apotap T+ ab2=0, Aot ae1+aez=0, (40)

where use has been made of the relationship between the

matrix elements in Eq(27). The second pair of equations
relating the coefficients of the=2 eigenfunctions are also
obtained from Eq(26) and are given by

X331+ X348e1 T X353p2 T X362e2= 0,

41
X431+ X421 Xa53p2 T Xa62e2= 0. “D

From the identity 4 siha=4 sir? a—(sin 22)?, we obtain the

relation

hl,,=hl,+ (114 hL,,= (1/4)(hl,,— 2hL, )+ (3/2)hl,,,
(42)
from Eq. (24). Therefore, by making use of the matrix ele-
ments in Eq.(27), we obtain

1 3 1 3
X33= aXs51 2X35:  X34= X561 236,

43
X43= X657 3Xa5.  X4aa= iXe6T X 46- “3
Substitution of Eq(43) into Eq. (41) then gives
X3d (34 ap1+apy |+ x3d (3/4)@e1 + Aer]
+ (/4 (X552p1 1 X562e1) =0,
(44)

Xad (3/4)ap1+aps |+ xad (3/4)@e1 +aer]

+(1/4) (xe52p1+ X662e1) = 0.
The final pair of equations relating the coefficients of the
=2 eigenfunctions are given by

Xs553p2 1 X562e2= 0,

45
X652+ X662e2=0, “9

which follow from Eq.(26). The axial componer,(r) of
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FIG. 3. Plot of the eigenfunction in Ed48) in terms of the normalized
radial coordinate/ry, .

which clearly indicates that the perturbed fields outside the
beam vanish. Similar to the sausage mode, the stability prop-
erties of axisymmetric perturbations with radial mode num-
ber n=2 do not depend on the location of the conducting
wall.

Figure 3 shows a normalized plot of the eigenfunction in
Eq. (48) versus the radial coordinatgr,. Note that the
normalized eigenfunction);(r)/a;jo has its maximum and
minimum values at/r,=0 andr/r,=0.815, respectively.
The radial component of the perturbed electromagnetic
force, which is proportional to the derivative dij(r)/dr,
changes sign at/r,=0.815. Therefore, with an appropriate
phase, the perturbed force, produced by the axisymmetric
perturbations for then=2 radial mode, may push the inner
beam particles toward the locatiofr,=0.815, depleting the
particle density near the beam axis. The tdrallowing in-
stability originates from this physical mechanism. On the
other hand, the beam particles may also accumulate near the
beam axis if the phase of the force is shifted dyadians.

Axisymmetric perturbations with radial mode number
n=2 are characterized by the so-called hollowing instability.
The dispersion relation for the=2 mode is obtained from

the perturbed vector potential has the same radial profile a89- (30) by substituting Eqs(25) and (27) into Eq. (30).

the perturbed electrostatic potential(r) for the electro-

Carrying out some straightforward algebraic manipulation,

static and magnetostatic perturbations characterized by lond2€ dispersion relation for the=2 mode is given by

wavelength [krp|<1), low-frequency (wr,|<c) perturba-
tions. Therefore, it follows thed, /a,,=ae; /as, . Equation
(44) can be simplified to give

X3 (3/4)aps+aps |+ x3d (3/4)ae1 +ae2]=0,

Xad (3/4)aps+aps |+ xad (3/4) @1+ ae2]=0,

by making use of Eq(45).

The dispersion relation for the=2 radial mode is ob-
tained from Eq.45) and is given by Eq(30). We also note
that xasx46— X3sxas57 0 when Eq(30) is satisfied. Therefore,
the coefficients in Eq(46) are related by

(3/day tap=0, (3/d)as+agn=0. (47

Finally, making use of Eqg40) and(47), the eigenfunctions
in Eq. (22 for the n=2 radial mode are given by

(46)

r\2 P4
Qjo 1_4(_ +3(_) s O$r<rb,

Pi(r)= My My (48)
0, rp<r=r,,

2
w
(03— 1602) (02— 41R)— 7—"?(9%%%)
b

X[(w2—16vg)(w2—4vg)— nfwgb(w2+ 2V§)]

=f77wgb(Q§+ 202)(0?+212), (49

where the Doppler-shifted frequendy, is defined by(,

=w—kBpc In Eqg. (19, and the(depressedbetatron fre-
guenciesy, andv,, are defined in Eq9). It is convenient
to introduce the oscillation frequencies,. and we. , de-
fined by

2

2
wpb
2
2y

2
w
wl. =102+ 2—;2 + \/( 1002+

2
w
—2v§< 3202 —pzb)
b ¥

b
(50)

for the beam ions, and
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2 mode solutions with frequencies—kB,c=* wy. . For f

w
w§¢=101/§+ ﬁprb #0, it follows that the right-hand side of E¢62) causes an
unstable coupling of the electron oscillations= *+ we- ,
, 7t 2 5 5 5 and the ion oscillationsy —kBc= * wy+ , at least for cer-
V| W0ve+ S-wpp | —2ve(32ve— nfwpy) tain ranges of the axial wavenumblerSpecifically, for the
positive-frequency electron branch in E¢2) with o
(1) ~4w,_, itis found that the dispersion relation in E&2)
for the background electrons. The dispersion relation in Egsupports one unstable solution for oscillation frequency and
(49) for the axisymmetrim=2 mode can then be expressed wavenumber §,k) in the vicinity of (wq,ko) defined by

in the equivalent form wo=we_ aNdkyBpC= we_ — wp, , and another unstable so-
lution in the vicinity of (wq,ko) defined bywy=we_ and
_ 2_ 2 _ 2_ 2 e
[(@=kBpC)"~ wp, Il (w—kBpC) "~ wp_] KoBpC= we_ + w,_ . In other words, the positive-frequency
X (02— w2 )(0?2—w?,) electron branch ¢~ + w._) couples unstably with the up-
¢ ¢ shifted ion branch ¢ —kBu,c~wy.) corresponding to the
=fpopl (0 —kBuC)?+2vp](w?+215), (520  axial wavenumbek,B,C=w,_ — . , and also couples un-

stably with the downshifted ion branch wkpagc
~—wp_) corresponding to the axial wavenumblegB,c
=w._+w,_. For protons or more massive ions, note that
the parametety= y,my,/Z,m, is much larger than unity. In
the parameter regimes of practical interest, the frequencies
[(0—kByC)?— wi. [ (w—kByc)>— wi_1=0, (53)  we. in Eq.(52) are typically much larger tha@, . andw,,
and thereforéw=w— we+ | <2we- .

Equation(52) is an eighth-order polynomial dispersion

where the oscillation frequencies... and wy-. satisfy the
conditionswy . > w, - and we > we_ .

In the absence of background electrofis-Q), Eq.(52)
simplifies to give

which is identical to the dispersion relation obtained

reviously!?223 Even for the limiting case where=0, the , _ :
P Y, 9 relation which can be solved numerically for the complex

guantity wﬁ_ occurring in Eq.(50) can assume a negative ilation f id f lized
value within a very limited range of beam parameters satisoSchation Trequencys over a wide range of normalize

fying beam intensitys, = w3/2y;w%, and fractional charge neu-

tralization f =ng/Zyn,. For our purposes here, to illustrate

16 wf)b the essential features of the two-stream instability forrthe
1_7<m< 1 G4 - mode, we first consider Eq52) for moderate beam

. . ) intensities withs,<0.2, say, a regime of considerable prac-
which has been obtained by making use of E). There-  jca interest for high-intensity proton linacs and storage

fore, instability follows from Eq.(53) for an intense ion  ings. In this case|dwl,|B,cok|<2wy. are good approxi-
beam satisfying Eq(54), which is very close to the space- matjon, the dispersion relation in E¢2) for the positive-

; o 3 102 2 :
charge-dominated |'f2I12't2XYhef95b:f_vpb/ZYbfogbﬂl-_ This  frequency electron branch with~ + w,_ can be approxi-
well-know instability-**~2*is associated with the inverted mated by the quadratic form

population in phase space of the Kapchinskij—Vladimirskij

beam equilibriur® in Eq. (2), and has been investigated in dw(dw— B,cdk)

numerical simulation studié$ 28 of one-component beam 4 (02 202) (02 +212)

propagation. The reader is urged to review Refs. 1 and :_Fi:_fz ©pb ‘Z‘)b* Vzb we; V‘Z '

22-28 for further detailed information on the stability prop- 4 we—wypy (0h; —wh )(we, —o0g_)

erties of high-intensity one-component particle beams. (56)
We now consider the dispersion relation in E§2) in-

cluding the effects of a background electron componént (in the vicinity of the axial wavenumbekoB,C= we-

=ne/Zn,#0). Some straightforward algebra shows that~ @b+, and by the quadratic form

w§T>Q, except for the narrow range of system parameters; 5., Buc oK)

satisfying

4 2 2 2 2
_ 2. _fz Wpp (wzb_-l-Z:b)(wZ_-}—ZZe)
2 4 we-wp- (wpy —0p ) (g, —wg )’

2 2

Wy wpp (1
?’2}%(02;Zwéb(yg f)<1. (55
The right-most inequality in Eq55) is simply the condition 57
V§>O [see Eq.(9)], required for existence of the equilib- in the vicinity of the axial wavenumbekyB,Cc= we_
rium. Note that Eq(55) reduces to Eq54) for f=0. Inthe +w,_. Here,dwo=w—ws_ and sk=k—Kkg,.
subsequent analysis of the dispersion relatki®) for radial For the positive-frequency electron branch in E5R)
mode numben=2, we consider values of normalized beamwith o~ + w,, , it is also readily shown that the dispersion
intensity s,= w2,/2y;w’, and fractional charge neutraliza- relation in Eq.(52) supports one unstable solution for oscil-
tion f outsidethe interval in Eq.(55), in which casew?_ lation frequency and wavenumbew k) in the vicinity of
>0. (wg,kp) defined bywy= we,; andkyB,C= we — wy,_, COI-

In the absence of background electroifis-Q), the dis- responding to the upshifted ion branch with—kpg,c
persion relation in Eq(52) gives purely oscillatory beam- =~ +wp,_, and another unstable solution in the vicinity of

Downloaded 19 Oct 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



Phys. Plasmas, Vol. 8, No. 10, October 2001 Two-stream sausage and hollowing instabilities . . . 4645

(wg,kg) defined bywg= we, andkyByc= we; + @y, COI- 1.5
responding to the downshifted ion branch with—kgBc (a) $p=05
~ — wyp, . Defining Sw=w— w., and sk=k—k,, and par-
alleling the similar derivation of Eq$56) and (57), the dis-
persion relation in Eq(52) for the positive-frequency elec-
tron branch withw~+ w., can be approximated by the
guadratic form

Sw(dw— Bpcdk)

7 wgb (w%,+2v%)(w£++2vg)

=—I2=—f— ,
T 4 werop (0, —0p ) (0. —0g ) 's |
(58) (b) $5=0.5
in the vicinity of the axial wavenumbekyB,c= we. 1 rrrrrrrr D07 D
—wp_, and by Ui |
Sw(Sw— Bpcdk) 0.5 | NN
, 7 oy (0f, +20)(wd, +212) |
=-Iy=-f7 2 2.7 .2 0
4 weswpy (wh, —wp ) (0g, —wg_) -8 -4 0 4 8
(59 Cr
in the vicinity of the axial wavenumbekyB,c= we, FIG. 4. Plots of the normalized growth ratg=(Im w)/wg, versus the
+ wpy shifted axial wavenumbef@) ¢ = (kB,C— we_)/wg, and (b) ¢ =(kByC

—we. ) wg, obtained from Eq.(52) for normalized beam intensitg,

We note from Eq(52) that the negative-frequency elec-
a(52 g q Y = w3y/275205,=0.5, and parameters otherwise identical to Fig. 1.

tron branch in Eq(52) with o~ — w. can also couple un-
stably with the various ion branches at appropriate axial

wavenumbers Wit_h negative values. HO\_/vever, _due to th‘f'nately bykoBpC~ wes . Therefore, the left-most growth-rate
symmetry properties of Eq52), the approximate dispersion ¢rve in Fig. 4a) obtained numerically from Eq52) corre-
relations are similar to the quadratic forms in E¢g6)—(59). sponds to the approximate dispersion relation in &),
The detailed stability properties of the axisymmetric hollow- 5nq the right-most growth-rate curve in Figayicorresponds
ing mode at moderate beam intensities can be investigated Ry Eq.(57). Similarly, the left-most growth-rate curve in Fig.
making use of Eqst56)—(59). The strength of the unstable 4(p) corresponds to Eq58), and the right-most growth-rate
coupling factors on the right-hand sides of EG6)—(59) for ¢ rve in Fig. 4b) corresponds to Eq59).
the hollowing mode is of the same order of magnitude as that  \yie remind the reader that the axial wavenumbers corre-
in Eq. (36) for the sausage mode. Therefore, the maximumyponding to instability in Fig. @) are far larger than those in
growth rates(I'y, I', I's, andI'y) of the hollowing-mode  Fjg 4a). Although the growth-rate curves obtained from the
instability are the same o_r_der-of-magmtude as the QVOth'épproximate dispersion relations in E¢s6)—(59) are sym-
rate of th? sausage !”Stab'“ty- . s o o metric about the appropriately defined axial wavenuntber
For high intensity beams withs,=wpy/2v,wg, @P- =k, each growth-rate curve in Fig. 4 obtained numerically
proaching unity, it is necessary to solve the full dispersiongom the full dispersion relation in Eq52) is skewed about
relation in Eq.(52) for the complex oscillation frequenay. k=K,. In particular, the growth-rate curves in Figatare
Typical_num_erical results obtained fro_m EG2 are illus-  gkewed to the left, whereas those in Figopare skewed to
trated in Fig. 4, where the normalized growth raie  the right. Of cause the growth-rate curves corresponding to
=(Imw)/wg, is plotted versus the shifted axial wavenumberyng of the approximate dispersion relations in E§6)—(59)
@ {-=(kBpC—we-) wg, and(b) £ =(kBsC—wei )/ wgn  are valid at lower values of beam intensity, and are symmet-
for the two classes of unstable modes described earlier in thig: apout the appropriate values k.
section. In Fig. 4, the normalized beam intensity S In conclusion, we note from Figs. 1 and 4 that the
= wpp/27p0p,=0.5, the fractional charge neutralization is growth rate of the hollowing instabilityn=2) is compa-
f=ne/Zpny=0.1, and system parameters are otherwise idenapje to that of the sausage instability=£1). In this con-
tical to Fig. 1. Moreover, the _electron collective QSC|IIat|on text, we conclude that the axisymmetric hollowing instability
frequenciesw,. are defined in Eq(51). We remind the may also be deleterious to intense ion beam propagation

reader that the collective oscillation frequenaigs. of elec-  through a background population of electrons.
trons are several orders in magnitude larger than the oscilla-

tion frequencie.ﬁmbi in Eq. (50) of the peam ions due to j[he V. CONCLUSIONS

large mass ratiap= y,my,/Zyme. In this context, the axial

wavenumbersk, defined in Egs.(56) and (57) are given In this paper, we have investigated two-stream stability
approximately byky,B,c~w._. Similarly, the axial wave- properties for axisymmetric perturbations in an intense ion
numbersk, defined in Eqs(58) and(59) are given approxi- beam propagating through background electrons, by making

Downloaded 19 Oct 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



4646 Phys. Plasmas, Vol. 8, No. 10, October 2001 Uhm, Davidson, and Kaganovich

use of the Vlasov—Maxwell equations. The basic assump-<M. Reiser, Theory and Design of Charged Particle Beafifgiley, New
tions and theoretical model were presented in Sec. Il. The York, 1994. _ _ _
theoretical model is based on the linearized Viasov—Maxwell J- D- Lawson.The Physics of Charged-Particle Beari@xford Science,

. . . . New York, 1988.
equations for perturbatlons with Iong axial Wavelength 5R. A. Jameson, il\dvanced Accelerator Concepsmerican Institute of

(k’rf<1). The eigenfunctions for axisymmetric radial Physics Conference Proceedings 279, edited by J. S. Wireterican

modes were introduced, and the dispersion relation was de-nstitute of Physics, New York, 1993p. 969.

termined self-consistently by evaluating the orbit integral for °E. P. Lee and J. Hovingh, Fusion Technbf, 369 (1989.

the perturbed distribution function in closed analytical form. 7Pro§eedings of the 1995 International Symposium on Heavy lon Inertigl
Stability properties of the sausage mode, characterizedg:s'ogees?”re;zbi’ (‘]1'9‘; QB‘::jrrdéf;e‘]ﬁszsti‘:::ﬁ”' and E. P. Lee; J. Fusion

by the ra@al mpde num_bmzl were investigated in Sec. 3D%. Kosakarév and P. R, Zenkevich, Part. Acé%,l (1972.

lll. The dispersion relation for the sausage mode was ex<r. c. pavidson and H. S. Uhm, J. Appl. Phf, 885 (1980.

pressed in a quadratic form, similar to the dispersion relation®r. C. Davidson and H. S. Uhm, Phys. Flui2ls 60 (1978.

for the hose instability(dipole-mode.'® The eigenfunction D. Neuffer, E. Colton, D. Fitzgerald, T. Hardek, R. Hutson, R. Macek, M.

obtained self-consistently for the sausage mode indicates thaf!um. H. Thiessen, and T. S. Wang, Nucl. Instrum. Methods Phys. Res. A

the perturbations exist only inside the beam. Therefore, thgf’zl 1(1992.

. D. Neuffer and C. Ohmori, Nucl. Instrum. Methods Phys. Re348 390
presence of the grounded conducting wall does not affect the(1994)_ Y

stability behavior. Stability properties of the hollowing insta- 13\, 1zawa, V. Sato, and T. Toyomasu, Phys. Rev. L#4. 5044 (1995.

bility, characterized by radial mode numbet 2, were in- 3. Byrd, A. Chao, S. Heifets, M. Minty, T. O. Roubenheimer, J. Seeman, G.
vestigated in Sec. IV. The full dispersion relation for the 15$tupa}<0v,J-Th0m30ny and F. Zimmerman, Phys. Rev. T8t79(1997).
hollowing mode was obtained, which predicts instability in = Keil and B. Zotter, CERN Report No. CERNSR-TH/71-58(CERN
several ranges of axial wavenumberThe growth rates of 16§CIgng:v:g;%rrT ?I’tlcl)ﬂn :tegl\t”zce;ryldG'?nSev\{;l\}ai%?thys Rev. ST Accel. Beams
the sausage and hollowing instabilities are of the same orders, gs4401(1999. ' o S '

of magnitude as that of the dipole-mode hose instaﬂﬂ"ilyl YR. C. Davidson and H. S. Uhm, Phys. Lett285, 88 (2001).

this regard, we emphasize that the axisymmetric sausage affit. P. Lee, Phys. Fluidg1, 1327(1978.

hollowing instabilities may also be deleterious to intense ionizH- S. Uhm and M. Lampe, Phys. Flui@8, 1574(1980.

beam propagation through background electrons. 'S Uhm and M. Lampe, Phys. Fluidd, 1553 (1981,
G. Joyce and M. Lampe, Phys. Fluids, 3377(1983.

22H. S, Uhm and R. C. Davidson, Phys. Flui23 1586 (1980.
ACKNOWLEDGMENTS ZR. L. Gluckstern, inProceedings of the 1970 Proton Linac Confergnce

This research was Supported by the U.S Department 0fedited by M. R. Tracy(National Accelerator Laboratory, Batavia, IL,
T 1970, p. 811.

Energy, and in part by the Spallation Neutron Source Projects; o Wang and L. Smith, Part, Accdl2, 247 (1982.
251, M. Kapchinskij and V. V. Vladimirskij, inProceedings of the Interna-
tional Conference on High Energy Accelerators and Instrumentation
IR. C. DavidsonpPhysics of Nonneutral Plasmasddison-Wesley, Read- _ (CERN Scientific Information Services, Geneva, 193®I. I, p. 68.

ing, MA, 1990, and references therein. 2w, W. Lee, Q. Qian, and R. C. Davidson, Phys. Let220, 347 (1997).
2A. W. Chao,Physics of Collective Beam Instabilities in High Energy Ac- 2’I. Hofmann, L. Laslett, L. Smith, and |. Haber, Part. Accks, 145(1983.
celerators(Wiley, New York, 1993. 2| Haber and A. W. Maschke, Phys. Rev. Let2, 1479(1979.

Downloaded 19 Oct 2001 to 192.55.106.156. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



